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ABSTRACT
Providing recommendations that are both relevant and diverse is a
key consideration of modern recommender systems. Optimizing
both of these measures presents a fundamental trade-off, as higher
diversity typically comes at the cost of relevance, resulting in lower
user engagement. Existing recommendation algorithms try to re-
solve this trade-off by combining the two measures, relevance and
diversity, into one aim and then seeking recommendations that
optimize the combined objective, for a given number of items. Tra-
ditional approaches, however, do not consider the user interaction
with the suggested items. In this paper, we put the user at the central
stage, and build on the interplay between relevance, diversity, and
user behavior. In contrast to applications where the goal is solely to
maximize engagement, we focus on scenarios aiming at maximizing
the total amount of knowledge encountered by the user. We use
diversity as a surrogate for the amount of knowledge obtained by
the user while interacting with the system, and we seek to maxi-
mize diversity. We propose a probabilistic user-behavior model in
which users keep interacting with the recommender system as long
as they receive relevant suggestions, but they may stop if the rele-
vance of the recommended items drops. Thus, for a recommender
system to achieve a high-diversity measure, it will need to produce
recommendations that are both relevant and diverse. Finally, we pro-
pose a novel recommendation strategy that combines relevance and
diversity by a copula function. We conduct an extensive evaluation
of the proposed methodology over multiple datasets, and we show
that our strategy outperforms several state-of-the-art competitors.
Our implementation is publicly available1.

CCS CONCEPTS
• Information systems → Personalization; Recommender
systems; • Computing methodologies→Modeling and simu-
lation.

KEYWORDS
User Modeling; Diversity; Recommender Systems
∗Also with ICAR-CNR.
1https://github.com/EricaCoppolillo/EXPLORE

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0490-1/24/08.
https://doi.org/10.1145/3637528.3671949

ACM Reference Format:
Erica Coppolillo, Giuseppe Manco, and Aristides Gionis. 2024. Relevance
Meets Diversity: A User-Centric Framework for Knowledge Exploration
Through Recommendations. In Proceedings of the 30th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD ’24), August 25–
29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3637528.3671949

Iterative knowledge exploration via recommendations

Knowledge exploration 

continues as long as user 

receives relevant items

Set of information items accessed

Knowledge exploration 

terminates when user 

receives less relevant items

Large and 

diverse set

Small or 

non-diverse set

Low 

diversity

score

High 

diversity

score

Figure 1: The knowledge-exploration process, illustrating
the interplay among relevance, diversity, and user behavior.

1 INTRODUCTION
Recommender systems play a significant role in helping users dis-
cover new information and expand their knowledge base. Notable
examples are the adoptions of recommendations for finding news ar-
ticles or books to read [46], listening to enjoyable music [14],visiting
interesting locations [47], and more. Recommender systems aim
to predict and leverage users’ interests to identify the portions of
the catalog that match them, thus enabling efficient exploration
of vast volumes of information and offering benefits ranging from
increased personalization and user satisfaction to improved engage-
ment and resource efficiency.

Recommenders are primarily focused on maximizing relevance.
However, from the standpoint of knowledge exploration, incor-
porating diversity into recommendations adds significant value,
as emphasized in earlier research [20, 40]. Indeed, providing di-
verse recommendations can be critical in mitigating detrimental
consequences, such as being trapped in rabbit holes in platforms
like Youtube [16, 35, 43] or Reddit [32], where the algorithm may
lead the user to consume limited types of content. To achieve a
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balance between relevance and diversity, current methods merge
these two metrics into a single objective for optimization. However,
they overlook user behavior and how users interact with the rec-
ommended list of items. For instance, typical approaches assume a
fixed number of interactions between the user and the algorithm,
disregarding any reactions or refusals from the user during the
exploration process. Indeed, users might reject recommended items
and quit the process.

In this paper, we propose a new framework for recommender
systems, where we place the user at the forefront. We consider
the interaction of the user with the algorithm to be a knowledge-
exploration task, where recommendations enable exploration. The
interaction of the user with the system is guided via a user-behavior
model, i.e., the propensity of a user to accept or reject recommenda-
tions according to their preferences and patience. As the objective
is to maximize the amount of knowledge that a user acquires during
exploration, we model the knowledge accrued by the user using
a diversity measure, which we consequently aim at maximizing.
Notably, although diversity is the sole optimization objective, the
coupling of the exploration task with the user-behavior model
implies that the recommendation system is required to produce rec-
ommendations that are both relevant and diverse. We illustrate the
proposed concept of “knowledge exploration via recommendations”
with the following example.

(a) (b) (c)

Figure 2: Illustration of the impact of different recommenda-
tion strategies. White points are recommended items, blue
circles indicate information coverage. (a) High relevance,
low diversity (e.g., all about ‘technology’); (b) High diversity,
likely non-relevant (e.g., ‘technology’, ‘religion’, ‘lifestyle’);
(c) Optimal balance: relevant and diverse, keeping user en-
gaged (e.g., ‘technology’, ‘science’, ‘engineering’).

Example.Alice interacts with a news recommender system for find-
ing interesting news articles to read. The knowledge-exploration
process is iterative, and is depicted in Figure 1. At each step, the
system recommends a set of news articles to Alice, and Alice clicks
on an article to read. At some point, Alice can decide to quit, either
because she received enough information, or because the recom-
mendations are not very interesting to her, or simply because she
got bored. Our goal is to design a recommender system that maxi-
mizes the amount of knowledge received by Alice. The challenge is
to strike a balance between diversity and relevance to keep Alice en-
gaged while exploring interesting topics, avoiding scenarios where
recommendations are either too focused (Figure 2(a)) or too diverse
and irrelevant (Figure 2(b)). Our aim is to create an ideal scenario
(Figure 2(c)) where Alice explores many relevant yet diverse topics,
enriching her knowledge.

Motivated by the previous example, we propose a novel frame-
work where relevance governs the termination of exploration, while
the overall quality is measured by diversity. We instantiate our
model using two standard notions of diversity, one based on cover-
age and the other based on pair-wise distances [3, 7, 10]. Both diver-
sity notions, coverage and pairwise distances, can be defined using
an underlying space of user-to-item ratings or categories/topics.

Finally, we propose a novel recommendation strategy that com-
bines relevance and diversity by a copula function. We perform
an extensive evaluation of the proposed framework and strategy
using five benchmark datasets publicly available, and show that
our strategy outperforms several state-of-the-art competitors.

Our contributions are summarized as follows:
• We develop a user-centric model for knowledge exploration
via recommendations; our framework considers the interplay
among relevance, diversity, and user behavior.
• We instantiate our model with two diversity measures, de-
fined over user-to-item ratings or categories/topics.
• We propose a recommendation strategy that accounts for
both diversity and relevance when providing suggestions.
• We conduct an extensive analysis over multiple benchmark
datasets and several competitors to show the effectiveness
of our proposal in the suggested framework.

The rest of the paper is structured as follows. Section 2 presents
the related work in terms of user modeling and diversity in recom-
mendations. Section 3 presents our problem definition and method-
ology. In Section 4, we present our recommendation strategy. Ex-
perimental results are reported in Section 5, and finally Section 6
concludes the paper and provides pointers for future extensions.

2 RELATEDWORK
User modeling in recommender systems. The effects of user
behavior in recommender systems, in terms of novelty and diver-
sity, have gained a lot of attention in recent years. Analysis can
be conducted by either running user studies [24, 53], or by means
of simulation [18, 49]. Analyzing the choices made by actual users
can yield more dependable outcomes; however, it also requires cre-
ating an effective recommendation system and engaging users for
conducting comprehensive studies. On the other hand, simulating
user choices is a more straightforward method, allowing for testing
several system configurations at no expense. However, it requires
a realistic model of user behavior.

To address this challenge, several user-behavior models have
been proposed in the literature. Hazrati and Ricci [19] model the
probability that a user picks a recommended item as being pro-
portional to its utility. Similarly, Bountouridis et al. [5] propose
a simulation framework in which users decide to interact with a
certain number of items per iteration, according to their given pref-
erences. Szlávik et al. [42] present three different user-behavior
models, where users either blindly follow recommendations and
choose the most popular items, or completely ignore suggestions
and pick items randomly.

The aforementioned models present certain limitations, namely
users necessarily have to pick an item, i.e., they cannot leave the
application, and second, the selection probability stays constant
over time. We overcome these limitations by modeling a quitting
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probability, according to which users can interrupt their interac-
tion with the recommender system. We assume that the quitting
probability depends on the utility of the recommended items and
on the user patience, which degrades over time.

Notably, with our framework, we leverage the intrinsic inter-
play among relevance, diversity, and user behavior, since successful
recommendation strategies need to ensure that they provide rec-
ommendations that are both relevant and diverse.
Diversity in recommendation. Diversity in recommendations
has been acknowledged as a crucial issue [8, 20, 40], and over
the past decade, it has received considerable attention [1, 2, 44].
Several online and targeted user studies assessed the increase in
user satisfaction when diversity is incorporated into the list of
suggested items [8, 21]. For example, Allison et al. [9] show that, if
diversity (besides other objectives) is not taken into account, the
interactions between users and recommender systems are prone to
homogenization and, consequently, low utility.

The challenge of striking a balance between diversity and rel-
evance has been explored both in the context of recommender
systems and in the broader domain of information retrieval. For
instance, one of the most popular methods in the literature of in-
formation retrieval is the maximal marginal relevance (MMR) [7].
It employs a weighted linear combination of scores that evaluate
both utility and diversity, offering a systematic way to address this
critical aspect. In the specific context of recommender systems,
Ziegler et al. [54] introduced one of the earliest methods for en-
hancing diversity. They use a greedy selection approach, where
they pick items that minimize the similarity within a recommended
list. Liu et al. [27] present a solution based on random walks for the
so-called accuracy-diversity dilemma, i.e., the challenge in finding
a profitable trade-off between the two measures. This concept is
also known as calibration, as mentioned by Steck [41], and refers
to the algorithm’s capability to produce suggestions that do not
under-represent (or ignore) the user’s secondary areas of interest.

Several re-ranking strategies have also been introduced: Ashkan
et al. [3] propose to greedily select items by maximizing the utility
of a submodular function; Sha et al. [39] suggest to optimize the
diversity loss of items using probabilistic matrix factorization; Chen
et al. [10] propose a determinantal point process (DPP) to re-rank
the recommended items so as to maximize the determinant on the
items’ similarity matrix. Hansen et al. [15] investigate the impact
of diversity on music consumption, and propose two innovative
models: a feed-forward neural ranker that produces dynamic user
embedding, and a reinforcement learning-based ranker optimized
on the track relevance. Reinforcement learning is indeed a suitable
solution for addressing the diversity problem. It plays a role in the
work by Parapar and Radlinski [29], where diversity is induced
by adopting multi-armed bandits in the elicitation phase; and in
the online learning framework proposed by Yue and Guestrin [50],
where diversification is obtained by carefully balancing the explo-
ration and exploitation of users’ preferences and interests. Notably,
these reinforcement learning-based approaches typically require a
lengthy training phase, which can often be prone to stability issues.

Several other neural-networkmodels have been applied to address
the diversity problem. Gao et al. [13] adopt a variational autoencoder
to induce targeted (i.e., topical) diversity. Liang et al. [25] propose

a bilateral branch network to achieve a good trade-off between rele-
vance and diversity, defined at either domain or user level. Zheng
et al. [52] present a graph neural network (GNN) for diversified
recommendations, where node neighbors are selected based on
inverse category frequency, together with negative sampling for
inducing diverse items in the embedding space. Yang et al. [48] pro-
pose an extension, optimizing a graph-based recommender system
to suggest items that maximize the number of covered categories.

In contrast to most of the approaches mentioned earlier, the rec-
ommendation strategy we introduce, explore, does not necessitate
any form of training or hyperparameter tuning, it is computation-
ally efficient, and is shown to provide both highly relevant and
diverse suggestions.

3 USER MODEL AND PROBLEM
FORMULATION

Algorithm 1 Simulation process for user 𝑢
Input: 𝑢, I, S, R
Output: X
1: X ← ∅
2: 𝑞𝑢𝑖𝑡 ← False
3: while not 𝑞𝑢𝑖𝑡 do
4: L𝑡 = [𝑖𝑖 , 𝑖2, ..., 𝑖𝑘 ] ← S(R (𝑢, I \ X), X)
5: examining L𝑡 ← Algorithm 2
6: if 𝑢 does not quit then
7: 𝑖 ← picked item
8: X ← X ∪ {𝑖 }
9: else
10: 𝑞𝑢𝑖𝑡 ← True
11: end if
12: end while

We consider a typical recommendation setting in which we have
a set of𝑚 usersU and a set of𝑛 itemsI. We also consider a function
R : U ×I → R that provides us with a relevance score R(𝑢, 𝑖), for
each user𝑢 ∈ U and item 𝑖 ∈ I. We assume that the function R can
be computed by a black-box method, and state-of-the-art relevance-
scoring functions can be employed, such as content similarity [30],
collaborative filtering [37], or a combination of both [6].

Our goal in this paper is to create lists of diverse recommenda-
tions using such relevance-scoring functions as a black box, rather
than devising a novel R.
Item-to-item distance function. We next discuss how to define
a distance function between pairs of items in I, which will be used
in one of our two diversity definitions.

Given an item 𝑖 ∈ I, we denote by x𝑖 the vector of users with

𝑥𝑖𝑢 =

{
1, if user 𝑢 interacted with item 𝑖 ,
0, otherwise.

The vectors {x𝑖 } can be retrieved by user-log data. A more fine-
grained representation of vectors {x𝑖 } beyond binary is also possi-
ble, for instance, using numerical values that represent the rating
of user 𝑢 for item 𝑖 , if such information is available.

An alternative approach is to use categories (or keywords, or
genres, depending on the application). In particular, we consider
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Algorithm 2 User behavior at step 𝑡
Input: L𝑡
Output: 𝑖 ∈ L𝑡 or quits
1: interest← False
2: for 𝑗 = 1, . . . , 𝑘 do
3: 𝑖 ← L𝑡 [ 𝑗 ]
4: quitting← with probability 𝜂𝑡
5: if 𝑢 quits then
6: return
7: else
8: examining 𝑖 ← with probability 𝑞𝑖
9: if 𝑖 is interesting then
10: interest← True
11: end if
12: end if
13: end for
14: if not interest then
15: return
16: end if
17: for 𝑗 = 1, . . . , 𝑘 do
18: 𝑖 ← L𝑡 [ 𝑗 ]
19: consuming 𝑖 ← with probability 𝑝𝑖
20: if 𝑢 consumes 𝑖 then
21: return 𝑖

22: end if
23: end for

a set of categories C, and we define y𝑖 to be a category vector, for
item 𝑖 ∈ I, where

𝑦𝑖𝑐 =

{
1, if category 𝑐 relates to item 𝑖 ,
0, otherwise.

Given two items 𝑖, 𝑗 ∈ I, we hence define their distance as the
weighted Jaccard distance

𝑑 (𝑖, 𝑗) = 1 −
∑

𝑤∈W min{𝑧𝑖𝑤 , 𝑧 𝑗𝑤}∑
𝑤∈W max{𝑧𝑖𝑤 , 𝑧 𝑗𝑤 }

, (1)

whereW is either the set of usersU or the set of categories C, and
accordingly, z𝑖 is the user vector or the category vector of item 𝑖 .

Finally, we note that other state-of-the-art distance functions
can also be used, such as Euclidean distance, cosine similarity, or
Minkowski distance. We do not investigate what is the best distance
function to be used, as this is orthogonal to our study and beyond
the scope of this paper.
Diversity. Given a set of items X ⊆ I, we define the diversity of
the set X. We explore two different definitions of diversity.

Our first definition is based on the concept of coverage. It assesses
the degree to which the items within X adequately represent the
entire range of categories C. In particular, for a set of items X ⊆ I,
we define its coverage-based diversity as

div
𝐶
(X) = 1

|C|

∨
𝑖∈X y𝑖


0
, (2)

where ∥ · ∥0 returns the number of non-zero entries of the binary
vector

∨
𝑖∈X y𝑖 . Notice that the metric div

𝐶
is scaled to fall within

the range of 0 to 1, considering the total number of categories
in C. It is worth highlighting that div

𝐶
favours larger X sizes, as

they typically cover a wider range of categories. Additionally, div
𝐶

naturally prefers items that individually provide extensive coverage.
Our second measure of diversity employs the distance function 𝑑

that we defined in the previous paragraph. In particular, for a set of
items X ⊆ I with |X| ≥ 2, we define its distance-based diversity as

div
𝐷
(X) = 1

|X| − 1

∑︁
𝑖∈X

∑︁
𝑗∈X

𝑑 (𝑖, 𝑗), (3)

and we define div
𝐷
(X) = 0, if |X| < 2. Notice that the number of

terms in div
𝐷
is quadratic with respect to |X|. By normalizing with

( |X| − 1) the dependence becomes linear in |X|. As with div
𝐶
, the

div
𝐷
metric favors larger sets, in addition to favoring items whose

distance is large to each other.
User model. A central aspect of our approach is that we aim
to evaluate the quality of a recommendation algorithm S in the
context of the user response to items recommended by S. We view
the user-algorithm interaction as a dynamic knowledge-exploration
process, in which the algorithm recommends items to the user, and
the user interacts with the recommended items. The knowledge-
exploration process continues as long as the recommended items are
of interest to the user. If the recommended items are not interesting
enough (meaning, if they have low relevance for the user) the user
may (stochastically) decide to quit.

To formalize the exploration process between the user and the
recommendation algorithm S, which is needed to evaluate the
quality of S, we propose a user model. Our model is specified in
terms of a relevance-scoring function R, which guides the behavior
of the user, and in terms of a recommendation algorithm S, which
enacts the choices within S.

Our user model, which formalizes knowledge-exploration as an
iterative process, is described as follows.

(1) The set of items that the user interacts with during the ex-
ploration process is denoted by X. Initially, X is empty.

(2) In the 𝑡-th step, the recommendation algorithm S generates
a list of items L𝑡 to present to the user. The user examines
these items in a specified order.

(3) At any point in the current step, the user has the option
to quit. The likelihood of quitting (to be quantified later)
depends on two factors: the relevance of the recommended
items and the user’s patience. If the user fails to find inter-
esting items in list L𝑡 or if they stochastically run out of
patience, they may opt to conclude the exploration process.

(4) If the user does not quit, with a certain probability that
depends on the relevance of the recommended items (and
which we quantify later), they select an item 𝑖 from the list
L𝑡 and interact with it. The item 𝑖 is added to the set X and
the exploration process continues.

(5) Upon quitting, the total score achieved by the recommen-
dation algorithm S is determined to be div(X), where div
is one of our diversity functions, div

𝐶
or div

𝐷
. This score

reflects the diversity in the items the user has interacted
with throughout the exploration process. We denote the
final number of steps performed by the user as 𝜅.

Algorithm 1 depicts the overall exploration process.
To fully specify the user model we need to describe in more detail

the probability that the user selects an item to interact with, as well
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as the probability of quitting the exploration. Before presenting
more details about these aspects of the model, we first formalize the
problem of designing a recommendation algorithm in the context
of our user model.
The recommendation task (problem statement). The algorith-
mic problem that we address in this paper is the following.

Problem 1. Given a set of items I, a set of usersU, a relevance-
scoring function R : U × I → R, a diversity function div : 2I → R,
and a user model for knowledge-exploration as the one described in the
previous paragraph, the goal is to design a recommendation algorithm
S that maximizes the diversity score div(X) for the set of items X
that a user 𝑢 ∈ U interacts with.

Item selection.We now discuss step (4) of the iterative knowledge-
exploration user model presented in the previous paragraph, that
is, we specify how we model the probability that a user selects an
item 𝑖 from the list L𝑡 to interact with. We first assume that a user
does not quit the exploration, i.e., that they have enough patience
to explore the whole L𝑡 and that they find at least a relevant item
within it (see next paragraph). In that case, the user selects an item 𝑖

from L𝑡 with probability proportional to the relevance of 𝑖 for that
user𝑢, that is, 𝑝𝑖 = R(𝑢,𝑖 )∑

𝑗 ∈L𝑡 R(𝑢,𝑗 )
. As noted before, the selected item 𝑖

is added to the set of interacted items X.
Quitting exploration. Last, we discuss step (3) in our user model,
that is, how we model the probability that a user quits the ex-
ploration process. A sensible model for the quitting probability
is crucial in our knowledge-exploration model, since we want to
mimic user behavior as realistically as possible. In particular, we
take into consideration two aspects: (𝑖) users decide to interact with
the recommended items according to their relevance; and (𝑖𝑖) users’
desire for exploration degrades with time, i.e., users get bored.

In the model we propose, a user examines the items in the list L𝑡
sequentially. Upon examining an item 𝑖 ∈ L𝑡 , the user decides with
probability 𝜂𝑡 to quit the exploration due to worn out at step 𝑡 . We
refer to this as the weariness probability. The weariness probabil-
ity 𝜂𝑡 , which is discussed in more detail below, models the user’s
decline of interest as a function of time, and depends on the current
step 𝑡 in the exploration process.

If the user does not quit, they decide whether item 𝑖 is interesting
to explore. The latter is decided again stochastically with Bernoulli
probability 𝑞𝑖 , which is a function of the relevance score R(𝑢, 𝑖)2.
Thus, the probability 𝑞𝑖 models the user’s interest in an item ac-
cording to its relevance. The examination of the list L𝑡 continues
until the user decides to quit or decides that there is at least one
item that is interesting to explore. Therefore, the probability that
the user quits examining the list L𝑡 without identifying any item
to explore is

𝑄𝑡 = {pr. quitting after the first item} + . . . +
{pr. quitting after the last item}

=

|L𝑡 |∑︁
𝑗=1

𝜂𝑡 (1 − 𝜂𝑡 ) 𝑗−1
𝑗−1∏
𝑖=1
(1 − 𝑞𝑖 ).

(4)

2In our experiments, 𝑞𝑖 is obtained by normalizing R(𝑢, 𝑖 ) into the [0, 1] interval by
considering the maximum relevance range.

The last ingredient in our model is to quantify the weariness prob-
ability 𝜂𝑡 at step 𝑡 . This probability models the user’s increasing
impatience or boredom as their interaction continues. To achieve
this, we employ the Weibull distribution [33], which has been pre-
viously used to model web page dwell times and session lengths in
web page navigation [26].

The Weibull distribution is described by two parameters, 𝜆 and 𝛾 ,
where 𝜆 > 0 is the scale parameter and𝛾 > 0 is the shape parameter
of the distribution. In particular, we set the weariness probability 𝜂𝑡
by resorting to the discrete version of the Weibull Distribution [36]:

𝜂𝑡 = 1 − 𝑞 (𝑡+1)
𝛾 −𝑡𝛾 , (5)

where 𝑞 = 𝑒−1/𝜆𝛾 , 0 ≤ 𝑞 ≤ 1.
The shape parameter 𝛾 controls the “aging” of the process. For

𝛾 = 1, the weariness probability remains constant, and the resulting
distribution becomes an exponential distribution, while for 𝛾 >

1, the weariness probability increases over time — modeling the
tiredness of the user3.

We can use the analytical properties of the Weibull distribution
to obtain the expected number of steps in the exploration process,
for the case that all recommended items are maximally relevant, i.e.,
𝑞𝑖 = 1 for all 𝑖 ∈ L𝑡 . In this case, there will be exactly one coin-flip
for quitting exploration for each list L𝑡 , and thus, 𝑄𝑡 = 𝜂𝑡 for all 𝑡 .
The overall quitting probability 𝑄𝑇 is then

𝑄𝑇 = {pr. quitting at step 1} + . . . +
{pr. quitting at step 𝑡} + . . .

=

∞∑︁
𝑡=1

𝑄𝑡

𝑡−1∏
𝑗=0
(1 −𝑄 𝑗 )

=

∞∑︁
𝑡=1

(
1 − 𝑞 (𝑡+1)

𝛾 −𝑡𝛾
) 𝑡−1∏
𝑗=0

𝑞 ( 𝑗+1)
𝛾 − 𝑗𝛾

=

∞∑︁
𝑡=1

(
1 − 𝑞 (𝑡+1)

𝛾 −𝑡𝛾
)
𝑞𝑡

𝛾

=

∞∑︁
𝑡=1

𝑞𝑡
𝛾

− 𝑞 (𝑡+1)
𝛾

.

(6)

The expected number of steps E[steps] examined by a user be-
fore quitting (or equivalently, the number of items in X) is hence
given by

E[steps] =
∞∑︁
𝑡=1

𝑡

(
𝑞𝑡

𝛾

− 𝑞 (𝑡+1)
𝛾
)
. (7)

Although lacking closed-form analytical expressions, Khan et al.
[22] show that it is bounded by the expectation 𝜇 = 𝜆 Γ(1 + 1/𝛾) of
the Weibull distribution in the continuous setting [33] as

𝜇 < E[steps] < 𝜇 + 1, (8)

which provides an algebraic relationship between the 𝜆 parameter
of theWeibull distribution and the admissible range for the expected
number of steps. Note that, if the relevance of the recommended
items is less than 1, it is possible to get more than one coin-flip for
quitting exploration in each list L𝑡 . In this case, the right-hand side
of Equation (7) provides an upper bound on the expected number
of steps during exploration.
3For 𝛾 < 1, the weariness probability decreases over time.
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Remarks on the proposed model. We observe that, as intended,
our model captures both the relevance of the recommended items
and the natural tiredness of users with exploration over time. For
fixed values of the Weibull distribution parameters 𝜆 and 𝛾 , which
control scaling and aging, the users’ time for exploration increases
with the relevance of the recommended items. Furthermore, the
ordering of the items in the list L𝑡 is important, and thus, we are
viewing the recommendation list as a sequence, and not just as
a set. This aspect would have implications on how to pick the
appropriate recommendation strategy, but also on the objective
(diversity) function, since it can affect the choices of the user.

4 RECOMMENDATION STRATEGY
In this section, we present our recommendation strategy for the
proposed knowledge-exploration framework. Recall that the rec-
ommendation task is displayed as Problem 1.

The core of the problem is to construct a list of recommendations
L𝑡 of size ∥L𝑡 ∥ = 𝑘 at the 𝑡-th step of exploration, for a given user
𝑢 ∈ U. We assume that X𝑡 is the set of items that the user has
interacted with at step 𝑡 , where X1 = ∅. We define J𝑡 = I \ X𝑡 to
be set of items that are available for recommendation, that is, all
items except the ones that the user has already interacted with.

For a user𝑢 and each item in the candidate set 𝑖 ∈ J𝑡 , we consider
its relevance score R𝑖 = R(𝑢, 𝑖) and its marginal diversity

T𝑖 = div(X𝑡 ∪ {𝑖}) − div(X𝑡 ), (9)

with respect to the interaction set X𝑡 , where div ∈ {div
𝐷
, div

𝐶
}. We

denote T𝑖 = D𝑖 when the distance diversity function div
𝐷
is used,

and T𝑖 = C𝑖 when the coverage diversity function div
𝐶
is used.

Intuitively, D𝑖 represents the distance of 𝑖 from all the items in
the interaction set X𝑡 , while C𝑖 represents the additional coverage
that 𝑖 provides4. Given P𝑖 ∈ {R𝑖 ,T𝑖 }, we also denote the min-max
normalization of the score P as P̂𝑖 = (P𝑖 − Pmin)/(Pmax − Pmin),
where Pmax and Pmin are the maximum and minimum values of P,
respectively, over all items in X𝑡 .

Our strategy for constructing the recommendation list L𝑡 is to
combine relevance and diversity into one score. For each item 𝑖

with relevance R𝑖 and diversity T𝑖 , we compute the combined score
Z𝑖 by adopting the Clayton copula function [11]

Z𝑖 =
[
R̂−𝛼𝑖 + T̂ −𝛼𝑖 − 1

]−1/𝛼
, (10)

where 𝛼 > 0 is a regularization parameter. The list L𝑡 is then formed
by selecting the top-𝑘 items from J𝑡 according toZ𝑖 .

We refer to this strategy as explore.When the distance diversity
function is used we refer to it as explore-D, and when coverage
diversity is used we refer to it as explore-C. A final word on the
justification of using the copula function (10). Copulas are functions
able to model the cumulative joint distribution of uniform marginal
distributions. In general, they are used to represent correlation and
dependencies of high-dimensional random variables [28, 31, 45, 51].
The Clayton copula function approaches 1 when both the input
variables 𝑢, 𝑣 are maximized, and it is minimized when either of
them is 0. The 𝛼 parameter governs the folding of the surface: the
higher the value of 𝛼 , the more stooped the function is when 𝑢 = 𝑣 .
4At the beginning of the exploration process (when X𝑡 = ∅), if T𝑖 = D𝑖 , the strategy
samples a highly relevant item 𝑖𝑟 so that D𝑖 = 𝑑 (𝑖, 𝑖𝑟 ) ; if T𝑖 = C𝑖 , then C𝑖 = y𝑖 , thus
picking the item that individually provides the highest coverage.

Table 1: Dataset statistics and mean Jaccard distances with
respect to users (�̂�𝑈 ) and categories (�̂�𝐶 ).

Dataset |U| |I| #Ratings �̂�𝑈 �̂�𝐶

Movielens-1M 6 040 3 706 1 000 208 0.97 0.83
Coat 290 300 6 960 0.97 0.73
KuaiRec-2.0 1 411 3 327 4 676 570 0.35 0.91
Netflix-Prize 4 999 1 112 557 176 0.95 0.83
Yahoo-R2 21 181 3 000 963 296 0.99 0.26

Complexity. Besides the (black-box) recommender system, the
critical point of the algorithm is the generation of L𝑡 to be presented
to users (Equations 9 and 10). Since X𝑡 is computed incrementally,
the cost of computing T𝑖 in Equation 9 is 𝑂 (𝑡𝑑) when adopting
div

𝐷
, and𝑂 ( |C|) when adopting div

𝐶
. Here, d is the computational

cost associated with the Jaccard distance. In total, the worst-case
cost for generating a list of k elements by considering 𝑛 items
is either 𝑂 (𝑛𝑑𝑘2) or 𝑂 (𝑛𝑘 |C|). We can observe the following. (1)
The number 𝑛 of items to consider could be large (in principle,
the entire item catalog). However, since T𝑖 is combined with R𝑖
in Equation 10, we can filter out low-relevance items, as they will
affect the value ofZ𝑖 due to the properties of the copula function.
Notice also that, in a practical implementation, sampling strategies
on portions of the catalog can also be devised. (2) The cost 𝑑 for
computing 𝑑 (𝑖, 𝑗), for two generic items, can be 𝑂 (𝑚), where𝑚 is
the total number of users. To relieve this cost, the scores for popular
items can be precomputed. Notice that the distribution of items
is typically heavy-tailed, thus we can expect that the number of
distance scores to precompute is not intractably large.

5 EXPERIMENTS
In this section, we assess the effectiveness of our strategy, either
explore-D or explore-C, in balancing accuracy and diversity. We
also evaluate it against several state-of-the-art competitors within
the proposed knowledge-exploration framework.

5.1 Datasets
We use five benchmark datasets, freely available online. We ensure
that all datasets have category information, which is used by our
diversity measures.
Movielens-1M5 [17]: A popular dataset with movie ratings in the
range [1, 5], and movie genres.
Coat6 [38]: Ratings on coats in the range [1, 5], and information
on coats’ properties.
KuaiRec-2.07 [12]: A recommendation log from a video-sharing
mobile app. Context information is provided, such as play duration,
video duration, and watch ratio. We convert the watch ratios into
ratings by interpolating the values from [0, 2] to [1, 5], where 0
represents “never watched” and 2 represents “watched twice”. We
use the small version of the dataset.
Netflix-Prize8 [4]: Movie ratings in the range [1, 5]. We adopt a
smaller sample of the original dataset by randomly selecting 5 000
5https://grouplens.org/datasets/movielens/1m/
6https://www.cs.cornell.edu/~schnabts/mnar/
7https://kuairec.com/
8https://www.kaggle.com/datasets/rishitjavia/netflix-movie-rating-dataset
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items and discard the users with less than 20 interactions. Movie
categories are acquired from a dataset using the IMDB database9.
Yahoo-R210: Song ratings in the range [1, 5]. Each item is accompa-
nied by artist, album, and genre information. We randomly sample
3 000 items and discard users with less than 20 interactions.

Table 1 provides a summary of the dataset properties, which
include the number of users (|U|), the number of items (|I|), the
number of ratings (#Ratings), and the distribution of item distances,
calculated based on either users or categories. During our exper-
iments, we use Equation (1) with the distance that exhibits the
lowest mean for each dataset. This approach helps us avoid poten-
tial bias from large distance values, which could otherwise hinder
the effectiveness of the approaches.

5.2 Competing Recommendation Strategies
We evaluate our recommendation algorithm, explore, against the
following baseline and state-of-the-art strategies designed for the
task of increasing diversity in recommender systems.
Relevance: This approach recommends the 𝑘 most relevant items,
making it a fundamental baseline. Since this strategy is solely fo-
cused on maximizing relevance, it represents the most straightfor-
ward and basic diversity method, and any other approach must
outperform it to be deemed effective.
Maximal marginal relevance (MMR) [7]: A classic method used
to balance relevance and diversity, performed by optimizing the
following marginal relevance:

MMR = argmax
𝑖∉𝐿

{
𝛽 R(𝑢, 𝑖) − (1 − 𝛽)max

𝑗∈𝐿
S𝑖, 𝑗

}
,

where S𝑖, 𝑗 = 1 − 𝑑 (𝑖, 𝑗). In our experiments, we set 𝛽 = 0.5 to
achieve the best trade-off between relevance and diversity.
DUM [3]: This strategy aims at diversifying the suggestions by
performing the following diversity-weighted utility maximization:

DUM = argmax
𝐿∈Π

𝑘∑︁
ℎ=1

[
𝑓

(
𝐿[:ℎ]

)
− 𝑓

(
𝐿[:ℎ−1]

)]
R(𝑢, 𝑖ℎ),

where Π denotes all possible permutations of 𝐿, 𝐿[:ℎ] represents
the list up to the ℎ-th element 𝑖ℎ , and 𝑓 (𝑋 ) = ∑

𝑐∈C 1{exists 𝑖 ∈
𝑋 : 𝑖 covers category 𝑐} is the number of categories in 𝑋 . Hence,
the function maximizes the relevance of the recommended items
weighted by the increase in their coverage.
DPP [10]: This method utilizes determinantal point processes and
maximizes diversity by iteratively selecting the item 𝑖 that maxi-
mizes the determinant of the item-item similarity matrix S defined
on a subset of items:

DPP = argmax
𝑖∉𝐿

{
log det(S𝐿∪{𝑖 } ) − log det(S𝐿)

}
.

DGREC [48]: A GNN-based recommender that aims at finding a
subset of diverse neighbors as well as maximizing the coverage of
categories, by optimizing the loss function:

LDGREC =
∑︁
(𝑢,𝑖 ) ∈𝐸

𝑤y𝑖LBPR (𝑢, 𝑖, 𝑗) + 𝜆 | |Θ| |22,

9https://github.com/tommasocarraro/netflix-prize-with-genres
10https://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did=67

where 𝑤y𝑖 weights each sample based on its category, 𝜆 is a reg-
ularization factor, and LBPR is the Bayesian personalized ranking
loss [34].

Notably, these competitors exhibit significant heterogeneity both
in terms of the approaches they employ as well as the specific
diversity functions they aim to optimize.

5.3 Experimental Setting
To evaluate the performance of the examined recommendation
strategies, we divide user interactions into a training and a test
set, following an 80-20% split ratio. When evaluating the accuracy,
we only focus on the recommendation list generated in the initial
exploration step. This is because evaluating the quality only for
the recommendation list generated in the first exploration step
represents a lower bound of the system’s overall accuracy. By con-
sidering multiple lists, the probability of achieving a hit increases,
thereby enhancing the overall metrics. Regarding diversity instead,
we consider the complete set of recommendation lists produced
across all exploration steps. Our approach also assumes that the
entire item catalog is accessible to every user during the simulation.

To calculate the relevance score R(𝑢, 𝑖), we employ a black-box
model in the form of a neural network based on matrix factoriza-
tion [23]. We fine-tune the latent factors of this model for each
dataset. For explore, we use a value of 𝛼 = 0.5 in the Clayton
copula. Additionally, we conduct hyperparameter tuning for this
parameter, and it appears that it has no significant impact on the
results (further details can be found in the Appendix).

We keep the length of the recommendation list, L, fixed at 10,
and vary the expected number of steps, E[steps], in the range
of [5, 10, 20]. This allows us to devise a suitable value for the
Weibull parameter 𝜆 to be used in the simulation experiments, ac-
cording to Equation (7). In more detail, its value is computed so that
E[steps] ∈ [5, 10, 20]. For E[steps] = 5, we devise a value 𝜆 = 6.2;
similarly, E[steps] = 10, devises 𝜆 = 11.85 and E[steps] = 20 de-
vises 𝜆 = 23.21. Regarding 𝛾 , we fixed 𝛾 = 2, since a value > 1
models a weariness probability which increases over time, as dis-
cussed in Section 3. To assess recommendation quality, we use
standard metrics: Hit-Ratio (HR), Precision, and Recall. Our experi-
mental results are the average of 20 independent trials, and we use
the ANOVA test to evaluate statistical significance. The code used
in these experiments is made publicly accessible11.

5.4 Results
Quality-diversity trade-off. We initiate our evaluation by assess-
ing the performance of all our strategies in terms of recommenda-
tion quality and diversity. Figure 3 displays the scores for Recall@10
(on the 𝑥-axis) and diversity (on the 𝑦-axis) across all five datasets,
either in terms of coverage (top-row) or distance (bottom-row).
The Figure shows that on all datasets, MMR and DGREC exhibit
notably poor performance with respect to Recall@10. In contrast,
the other strategies achieve significantly higher scores, with the
Relevance baseline performing the best, which aligns with our ex-
pectations. In terms of diversity, our method, explore-C, clearly
outperforms the other strategies. It achieves a substantially higher
diversity score while still delivering relevant recommendations. In
11https://github.com/EricaCoppolillo/EXPLORE
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Figure 3: Trade-off between div
𝐶
(top) and div

𝐷
(bottom), and Recall@10, respectively, across all the datasets considered. The 𝑥-axis

represents recommendation quality, while the 𝑦-axis indicates the diversity score.

fact, it strikes the best trade-off between diversity and relevance.
Similar considerations can be made for the distance-based variant,
explore-D. Other results can be found in the Appendix.
Best performing diversity strategy. Table 2 presents a compre-
hensive analysis of div

𝐷
, div

𝐶
and 𝜅 when E[steps] = 5. Addition-

ally, we report the deviations from the maximum diversity scores
in terms of distance and coverage (in Table 3), denoted as Δ�̄� and
Δ𝐶 , along with ΔE[steps] .

We observe that our strategy, either explore-D or explore-C,
consistently outperforms the competitors in terms of both div

𝐷
and

div
𝐶
across all datasets. We also show how these values deviate

from the expected maximum values. Notably, on the Movielens-1M
dataset, their scores are very close to their maxima. Our strategy
achieves significantly higher scores than the competitors on all
datasets, especially in terms of coverage.

Regarding the number of steps, as mentioned in Section 3, the rel-
evance plays a fundamental role in our exploration process. There-
fore, it is expected that our strategy performs slightly worse than
other competitors, particularly the Relevance baseline. Nevertheless,
our primary objective is to maximize recommendation diversity
while maintaining relevance as high as possible. Additional results
are reported in the Appendix.
Ablation study. In our final investigation, we explore the advan-
tages of combining both relevance and diversity through the copula
function in Equation (10), in contrast to a simpler strategy that
neglects relevance and relies on Equation (9).

Table 4 presents a summary of the results obtained forE[steps] =
10. For each strategy, we provide the values for div

𝐷
, div

𝐶
, and

actual steps 𝜅 . The scores are computed for two variants: one where
relevance is included through the copula function (w) and another
where it is ignored (w/o). The table also reports the differences in
scores (Δw). We can observe that the combination has a positive
effect both in terms of diversity and number of steps.
Timing. Another crucial aspect to consider is the timing needed to
provide L𝑡 , reported in Figure 4. As we can see, competitors such as
MMR and DPP require a considerable amount of time to compute

Table 2: Diversity scores for E[steps] = 5. Any best scores with
a statistical significance 𝑝 < 0.05 are highlighted in bold.

Dataset Strategy div
𝐷

div
𝐶

𝜅 Δ�̄� Δ𝐶 ΔE[steps]

M
o v
ie
le
ns
-1
M

Relevance 3.67 0.22 5.0 0.27 0.73 0.0

explore-D 4.91 0.36 4.98 0.03 0.55 0.0
explore-C 4.43 0.71 4.71 0.12 0.11 0.06

MMR 3.96 0.29 4.57 0.22 0.64 0.09
DUM 4.4 0.33 4.98 0.13 0.59 0.0
DPP 4.59 0.31 4.99 0.09 0.61 0.0

DGREC 3.36 0.37 4.49 0.33 0.54 0.1

Co
at

Relevance 3.15 0.3 4.36 0.38 0.3 0.13

explore-D 3.48 0.34 4.16 0.31 0.2 0.17
explore-C 3.36 0.35 4.13 0.33 0.18 0.17

MMR 2.43 0.26 3.54 0.52 0.39 0.29
DUM 3.11 0.3 4.31 0.38 0.3 0.14
DPP 3.28 0.31 4.33 0.35 0.27 0.13

DGREC 2.2 0.24 3.2 0.56 0.44 0.36

Ku
ai
Re

c-
2.
0

Relevance 0.76 0.13 4.81 0.81 0.74 0.04

explore-D 1.56 0.11 3.54 0.61 0.78 0.29
explore-C 1.08 0.34 4.09 0.73 0.32 0.18

MMR 1.25 0.12 3.89 0.68 0.76 0.22
DUM 0.83 0.17 4.8 0.79 0.66 0.04
DPP 1.38 0.09 4.75 0.65 0.82 0.05

DGREC 0.77 0.11 2.64 0.81 0.78 0.47

N
et
fli
x

Relevance 4.04 0.32 4.86 0.2 0.59 0.03

explore-D 4.62 0.38 4.75 0.09 0.51 0.05
explore-C 3.97 0.6 4.43 0.21 0.22 0.11

MMR 3.56 0.3 4.19 0.3 0.61 0.16
DUM 4.16 0.36 4.89 0.18 0.53 0.02
DPP 4.38 0.34 4.88 0.13 0.56 0.02

DGREC 3.0 0.26 3.74 0.41 0.66 0.25

Ya
ho

o-
R2

Relevance 0.66 0.02 4.77 0.87 0.77 0.05

explore-D 4.4 0.08 4.49 0.13 0.1 0.1
explore-C 4.38 0.08 4.47 0.13 0.1 0.11

MMR 2.45 0.04 3.96 0.52 0.55 0.21
DUM 4.38 0.07 4.72 0.13 0.21 0.06
DPP 4.38 0.07 4.72 0.13 0.21 0.06

DGREC 1.02 0.02 3.68 0.8 0.77 0.26
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Figure 4: Timing for producing L𝑡 . The 𝑥-axis reports the strategies, while the 𝑦-axis the recommendation time (in seconds).

Table 3: Maximum scores in terms of diversity and coverage
per dataset, by varying the expected number of steps.

Dataset E[steps] �̄� 𝐶

Movielens-1M
5 5.05 0.80
10 10.05 0.93
20 20.03 0.98

Coat
5 5.05 0.43
10 10.05 0.68
20 20.03 0.89

KuaiRec-2.0
5 3.97 0.50
10 7.87 0.73
20 15.63 0.91

Netflix-Prize
5 5.05 0.77
10 10.05 0.87
20 20.03 0.91

Yahoo-r2
5 5.05 0.09
10 10.05 0.17
20 20.03 0.34

their recommended lists, in particular for the largest datasets. Our
algorithm explore, instead, proves to be much more efficient, and
its running time is basically constant over all the benchmarks.

6 CONCLUSION AND FUTUREWORK
In this study, we addressed recommendation diversity by introduc-
ing a user-behavior model where relevance drives engagement. We
developed a recommendation strategy that optimizes the delivery of
diverse knowledge based on user behavior. Our experimental anal-
ysis confirms the effectiveness of this approach, though it remains
open to further enhancements. First, the behavioral model can be
refined to include more sophisticated scenarios, such as refresh-
ing the list, guiding its composition, and incorporating dynamic
adjustments to the weariness probability beyond temporal decay.
Additionally, our model assumes the relevance score accurately
reflects a user’s interest in an item. However, since the relevance
score is algorithmically computed and may not be entirely accurate,
we can adapt the user behavior model by incorporating a random
discount factor for the relevance of each item. Finally, the proposed
strategy can be improved in several ways, such as integrating differ-
ent distance measures or extending it to include additional metrics
beyond diversity, like serendipity or fairness.

Table 4: Results in terms of div
𝐷
, div

𝐶
and 𝜅 by including

(w) and excluding (w/o) relevance from our recommendation
strategies. Positive relative changes (Δw) are reported in bold.

Strategy Relevance div
𝐷

div
𝐶

𝜅

M
o v
ie
le
ns
-1
M explore-D

w 9.77 0.63 9.85
w/o 6.66 0.53 6.73

Δw +0.32 +0.16 +0.32

explore-C
w 8.84 0.89 9.7
w/o 6.56 0.86 7.0

Δw +0.26 +0.03 +0.28

Co
at

explore-D
w 6.73 0.51 8.02
w/o 5.5 0.47 6.41

Δw +0.18 +0.08 +0.2

explore-C
w 6.31 0.55 7.81
w/o 5.18 0.49 6.34

Δw +0.18 +0.11 +0.19

Ku
ai
Re

c-
2.
0 explore-D

w 3.06 0.17 6.86
w/o 2.38 0.13 4.47

Δw +0.22 +0.24 +0.35

explore-C
w 2.22 0.53 7.95
w/o 2.01 0.49 6.04

Δw +0.09 +0.08 +0.24

N
et
fli
x explore-D

w 9.03 0.59 9.24
w/o 7.42 0.54 7.52

Δw +0.18 +0.08 +0.19

explore-C
w 7.92 0.77 8.69
w/o 6.71 0.75 7.38

Δw +0.15 +0.03 +0.15

Y a
ho

o-
R2 explore-D

w 8.71 0.15 8.73
w/o 6.23 0.11 6.3

Δw +0.28 +0.27 +0.28

explore-C
w 8.67 0.15 8.7
w/o 6.25 0.11 6.31

Δw +0.28 +0.27 +0.27
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A ADDITIONAL RESULTS
Figure 5 shows the trade-off between diversity and accuracy. Fig-
ure 6 depicts the effects of tuning the 𝛼 parameter in the Clayton
copula function. Table 5 reports additional results for E[steps] ∈
[10, 20] across the considered datasets.

 

499



Relevance Meets Diversity: A User-Centric Framework for Knowledge Exploration Through Recommendations KDD ’24, August 25–29, 2024, Barcelona, Spain

Relevance explore-D explore-C MMR DUM DPP DGREC

0.00 0.25 0.50 0.75 1.00
HR@10

0.0

0.2

0.4

0.6

0.8

d
iv
C

0.00 0.25 0.50 0.75 1.00
HR@10

0.0

0.2

0.4

d
iv
C

0.00 0.25 0.50 0.75 1.00
HR@10

0.0

0.2

0.4

d
iv
C

0.00 0.25 0.50 0.75 1.00
HR@10

0.0

0.2

0.4

0.6

0.8

d
iv
C

0.00 0.25 0.50 0.75 1.00
HR@10

0.00

0.05

0.10

0.15

d
iv
C

0.00 0.25 0.50 0.75 1.00
HR@10

0.0

2.5

5.0

7.5

10.0

d
iv
D

0.00 0.25 0.50 0.75 1.00
HR@10

0

2

4

6

d
iv
D

0.00 0.25 0.50 0.75 1.00
HR@10

0

1

2

3

d
iv
D

0.00 0.25 0.50 0.75 1.00
HR@10

0

2

4

6

8

d
iv
D

0.00 0.25 0.50 0.75 1.00
HR@10

0

2

4

6

8

d
iv
D

0.00 0.25 0.50 0.75 1.00
Precision@10

0.0

0.2

0.4

0.6

0.8

d
iv
C

0.00 0.25 0.50 0.75 1.00
Precision@10

0.0

0.2

0.4

d
iv
C

0.00 0.25 0.50 0.75 1.00
Precision@10

0.0

0.2

0.4
d

iv
C

0.00 0.25 0.50 0.75 1.00
Precision@10

0.0

0.2

0.4

0.6

0.8

d
iv
C

0.00 0.25 0.50 0.75 1.00
Precision@10

0.00

0.05

0.10

0.15

d
iv
C

0.00 0.25 0.50 0.75 1.00
Precision@10

0.0

2.5

5.0

7.5

10.0

d
iv
D

(a) Movielens-1M

0.00 0.25 0.50 0.75 1.00
Precision@10

0

2

4

6

d
iv
D

(b) Coat

0.00 0.25 0.50 0.75 1.00
Precision@10

0

1

2

3

d
iv
D

(c) KuaiRec-2.0

0.00 0.25 0.50 0.75 1.00
Precision@10

0

2

4

6

8

d
iv
D

(d) Netflix-Prize

0.00 0.25 0.50 0.75 1.00
Precision@10

0

2

4

6

8

d
iv
D

(e) Yahoo-R2

Figure 5: Trade-off between either div
𝐶
or div

𝐷
and either HR@10 or Precision@10 across all the datasets. The 𝑥-axis shows the

recommendation quality while the 𝑦-axis represents the diversity score.
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Figure 6: Effects of tuning the 𝛼 parameter fixing E[steps] = 10. The 𝑥-axis represents different values of 𝛼 , while the 𝑦-axis
report values of div

𝐷
(left) and of div

𝐶
(right).
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Table 5: Results with E[steps] ∈ [10, 20] across all the datasets. Best scores with statistical significance 𝑝 < 0.05 are in bold.

Dataset Strategy div
𝐷

div
𝐶

𝜅 Δ�̄� Δ𝐶 ΔE[steps]

M
o v
ie
le
ns
-1
M

Relevance 7.45 0.34 10.02 0.26 0.64 0.0

explore-D 9.77 0.63 9.85 0.03 0.32 0.02
explore-C 8.84 0.89 9.7 0.12 0.05 0.03

MMR 7.29 0.43 8.62 0.27 0.54 0.14
DUM 8.95 0.51 10.03 0.11 0.45 0.0
DPP 9.29 0.5 9.99 0.08 0.46 0.0

DGREC 6.89 0.49 8.92 0.31 0.47 0.11

Co
at

Relevance 6.38 0.44 8.64 0.36 0.35 0.14

explore-D 6.73 0.51 8.02 0.33 0.25 0.2
explore-C 6.31 0.55 7.81 0.37 0.19 0.22

MMR 4.63 0.38 6.75 0.54 0.44 0.32
DUM 6.44 0.46 8.65 0.36 0.32 0.13
DPP 6.64 0.45 8.61 0.34 0.34 0.14

DGREC 4.56 0.37 6.33 0.55 0.46 0.37

Ku
ai
Re

c-
2.
0

Relevance 1.63 0.21 9.6 0.79 0.71 0.04

explore-D 3.06 0.17 6.86 0.61 0.77 0.31
explore-C 2.22 0.53 7.95 0.72 0.28 0.2

MMR 2.52 0.2 7.34 0.68 0.73 0.27
DUM 1.78 0.27 9.59 0.77 0.63 0.04
DPP 2.81 0.15 9.54 0.64 0.8 0.05

DGREC 1.71 0.19 5.45 0.78 0.74 0.45

N
et
fli
x

Relevance 8.17 0.46 9.73 0.19 0.47 0.03

explore-D 9.03 0.59 9.24 0.1 0.32 0.08
explore-C 7.92 0.77 8.69 0.21 0.12 0.13

MMR 6.76 0.43 7.94 0.33 0.51 0.21
DUM 8.36 0.51 9.72 0.17 0.41 0.03
DPP 8.82 0.5 9.73 0.12 0.43 0.03

DGREC 6.15 0.39 7.44 0.39 0.55 0.26

Ya
ho

o-
R2

Relevance 1.39 0.03 9.49 0.86 0.83 0.05

explore-D 8.71 0.15 8.73 0.13 0.14 0.13
explore-C 8.67 0.15 8.7 0.14 0.14 0.13

MMR 3.86 0.05 7.36 0.62 0.71 0.26
DUM 8.86 0.12 9.43 0.12 0.31 0.06
DPP 8.84 0.12 9.41 0.12 0.31 0.06

DGREC 2.04 0.03 7.35 0.8 0.83 0.26

(a) E[steps] = 10.

Dataset Strategy div
𝐷

div
𝐶

𝜅 Δ�̄� Δ𝐶 ΔE[steps]

M
ov
ie
le
ns
-1
M

Relevance 14.96 0.48 20.04 0.25 0.51 0.0

explore-D 18.96 0.86 19.4 0.05 0.12 0.03
explore-C 16.81 0.97 19.76 0.16 0.01 0.01

MMR 13.45 0.57 16.49 0.33 0.42 0.18
DUM 17.98 0.7 20.16 0.1 0.29 -0.01
DPP 18.6 0.71 20.02 0.07 0.28 0.0

DGREC 13.91 0.63 17.64 0.31 0.36 0.12

Co
at

Relevance 12.23 0.59 16.36 0.39 0.33 0.18

explore-D 12.85 0.7 15.48 0.36 0.21 0.23
explore-C 12.09 0.77 15.36 0.4 0.13 0.23

MMR 8.79 0.53 13.12 0.56 0.4 0.34
DUM 12.63 0.62 16.78 0.37 0.3 0.16
DPP 13.06 0.62 16.84 0.35 0.3 0.16

DGREC 9.31 0.53 12.84 0.54 0.4 0.36

Ku
ai
Re

c-
2.
0

Relevance 3.62 0.32 19.02 0.77 0.65 0.05

explore-D 6.16 0.26 13.83 0.61 0.71 0.31
explore-C 4.55 0.76 15.09 0.71 0.16 0.25

MMR 4.79 0.3 13.91 0.69 0.67 0.3
DUM 3.86 0.39 19.09 0.75 0.57 0.05
DPP 5.56 0.24 18.99 0.64 0.73 0.05

DGREC 3.55 0.3 11.33 0.77 0.67 0.43

N
et
fli
x

Relevance 16.19 0.6 19.29 0.19 0.34 0.04

explore-D 17.38 0.77 17.98 0.13 0.15 0.1
explore-C 15.6 0.87 17.53 0.22 0.04 0.12

MMR 12.79 0.56 15.34 0.36 0.38 0.23
DUM 16.59 0.65 19.33 0.17 0.29 0.03
DPP 17.49 0.66 19.36 0.13 0.27 0.03

DGREC 12.11 0.53 14.59 0.4 0.42 0.27

Ya
ho

o-
R2

Relevance 3.0 0.04 18.81 0.85 0.88 0.06

explore-D 16.48 0.28 16.5 0.18 0.17 0.18
explore-C 16.43 0.28 16.46 0.18 0.17 0.18

MMR 5.9 0.07 13.89 0.71 0.79 0.31
DUM 17.59 0.19 18.73 0.12 0.44 0.06
DPP 17.6 0.19 18.74 0.12 0.44 0.06

DGREC 3.92 0.04 14.56 0.8 0.88 0.27

(b) E[steps] = 20.
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